## Solutions Exam MOL040, Thermodynamics 2 03 November 2021

All 16 subproblems have equal weight for the final grade. Sometimes a NOTE is added, just meant as an explanation or advise.

## Problem 1

a) Note, that the answers below to part a) are not unique, in some cases overcomplete and are meant to be indicative.

- Equipartition theorem: At high enough temperature the energy per degree of freedom of a system is equal to $\frac{1}{2} k T$.
- Henry constant: An effective vapour pressure extrapolated from the vapour pressure dependence on the composition of a dilute solution towards the pure solute axis.
- Isopleth: A line in a temperature-composition or in a pressure-composition phase diagram indicating a constant overall composition, independent of the phases present.
- Critical nucleus: In nucleation of a solid phase from a liquid or a liquid phase from a vapour, too small sized nuclei of the new phase tend to disappear due to the interfacial energy with the mother phase. The critical nucleus has a size, just large enough to overcome this energy barrier.
- Solubility: The maximal amount of solute that can be dissolved in a certain solvent.
b)

$$
\begin{aligned}
& \mathrm{d} A=-P \mathrm{~d} V-S \mathrm{~d} T+\mu_{A} \mathrm{~d} n_{A}+\mu_{B} \mathrm{~d} n_{B}+E \mathrm{~d} q \\
& \left(\frac{\partial \mu_{B}}{\partial T}\right)_{V, q, n_{A}, n_{B}}=-\left(\frac{\partial S}{\partial n_{B}}\right)_{V, q, n_{A}, T}
\end{aligned}
$$

c) The expression is used to calculate the ionic strength of an electrolyte solution. Its value is a measure for the amount and strength of charges in the electrolyte and is used in thermodynamic theories of such solutions, like in the Debye-Hückel limiting law.
$I$ : Ionic strength.
$\Sigma_{i}$ : sum over all ionic components $i$ in the electrolyte
$z_{i}$ : charge of component $i$
$b_{i}$ : molality of component $i$
$b^{\ominus}$ : standard molality ( $1 \mathrm{~mol} / \mathrm{kg}$ )
d)

$$
\begin{aligned}
& \log \gamma_{ \pm}=-\left|z_{+} z_{-}\right| A \sqrt{I} \\
& A=\frac{F^{3}}{4 \pi N_{A} \ln 10}\left(\frac{\rho b^{\ominus}}{2 \epsilon^{3} R^{3} T^{3}}\right)^{\frac{1}{2}}=\frac{F^{3}}{4 \pi N_{A} \ln 10}\left(\frac{\rho b^{\ominus}}{2 \epsilon^{3} R^{3}}\right)^{\frac{1}{2}} T^{-\frac{3}{2}}
\end{aligned}
$$

For a solution with the same molality only the temperature dependence is relevant:

$$
\begin{aligned}
& \frac{\log \gamma_{ \pm}(275.00 \mathrm{~K})}{\log \gamma_{ \pm}(298.15 \mathrm{~K})}=\frac{A(275.00 \mathrm{~K})}{A(298.15 \mathrm{~K})}=\left(\frac{275.00}{298.15}\right)^{-\frac{3}{2}}=0.9224^{-\frac{3}{2}}=11.289 \\
& \log \gamma_{ \pm}(275.00 \mathrm{~K})=1.1289 \cdot \log (0.900)=-0.051655 \\
& \gamma_{ \pm}(275.00 \mathrm{~K})=0.888
\end{aligned}
$$

## Problem 2

a) We label the two compounds A and B . For an ideal mixture (a mixture in which there is no difference between the interactions between A and $\mathrm{A}, \mathrm{B}$ and B or A and B ), the total volume will simply be the sum of the two original volumes. So in terms of the molar volumes $V_{m, A}$ en $V_{m, B}$ we get

$$
V=V_{\text {ideal }}=n_{A} V_{m, A}+n_{B} V_{m, B}, \quad \text { so } \quad V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}=V_{m, A} \quad \text { and } \quad V_{B}=V_{m, B}
$$

N.B., the partial molar volume $V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}$ is not to be confused with the molar volume $V_{m, A}=\frac{V^{*}}{n_{A}}$. The latter is defined on the basis of the volume $V^{*}$ of the pure compound A.; only for an ideal solution $V_{A}=V_{m, A}$.
b)

$$
V=V_{i d e a l}+V^{E} \quad \text { with } \quad V_{\text {ideal }}=n_{A} V_{m, A}+n_{B} V_{m, B}
$$

To calculate the partial molar volumes, we first need to translate the molar excess volume to an excess volume according to $V^{E}=n V_{m}^{E}=\left(n_{A}+n_{B}\right) V_{m}^{E}$. If we rewrite $V^{E}$ in terms of $n_{A}$ and $n_{B}$, we get

$$
\begin{aligned}
& V^{E}=\left(n_{A}+n_{B}\right) V_{m}^{E}=\left(n_{A}+n_{B}\right) \frac{n_{A} n_{B}}{\left(n_{A}+n_{B}\right)^{2}}\left(a_{0}+a_{1} \frac{n_{A}-n_{B}}{n_{A}+n_{B}}\right) \\
& V=n_{A} V_{m, A}+n_{B} V_{m, B}+\frac{n_{A} n_{B}}{n_{A}+n_{B}}\left(a_{0}+a_{1} \frac{n_{A}-n_{B}}{n_{A}+n_{B}}\right) .
\end{aligned}
$$

We can find the partial molar volume of propionic acid using

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}=V_{m, A}+\frac{a_{0} n_{B}^{2}}{\left(n_{A}+n_{B}\right)^{2}}+\frac{a_{1}\left(3 n_{A}-n_{B}\right) n_{B}^{2}}{\left(n_{A}+n_{B}\right)^{3}}=V_{m, A}+a_{0} x_{B}^{2}+a_{1}\left(3 x_{A}-x_{B}\right) x_{B}^{2}
$$

Looking at the symmetry of $V^{E}$ and $V_{i d e a l}$ on exchanging $n_{A}$ and $n_{B}$, or $x_{A}$ and $x_{B}$, we can conclude

$$
V_{B}=V_{m, B}+a_{0} x_{A}^{2}+a_{1}\left(x_{A}-3 x_{B}\right) x_{A}^{2} .
$$

c) In an equimolar solution we have $x_{A}=x_{B}=0.5$. The molar volumes are

$$
V_{m, A}=76.00 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad V_{m, B}=77.00 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Using these values we obtain

$$
V_{A}=76.00-2.4697 \cdot 0.5^{2}+0.0608 \cdot(3 \cdot 0.5-0.5) \cdot 0.5^{2}=75.45 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad V_{B}=76.36 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

d) Putting $V_{A}=V_{B}$ and neglecting the term with $a_{1}$ we find

$$
\begin{gathered}
V_{m, A}+a_{0}\left(1-x_{A}\right)^{2}=V_{m, B}+a_{0} x_{A}^{2} \quad \text { so } \quad a_{0}\left(1-2 x_{A}+x_{A}^{2}\right)-a_{0} x_{A}^{2}=V_{m, B}-V_{m, A} \quad \text { and } \\
x_{A}=\frac{V_{m, B}-V_{m, A}-a_{0}}{-2 a_{0}}=\frac{77.00-76.00+2.4679}{-2 \cdot(-2.4679)}=0.702 \quad \text { and } \quad x_{B}=0.298
\end{gathered}
$$

## Problem 3

The dehydration reaction is
a)

$$
\mathrm{K}_{2} \mathrm{CO}_{3} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(s) \leftrightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(s)+1.5 \mathrm{H}_{2} \mathrm{O}(g)
$$

with equilibrium constant (activity of solids $a(s) \approx 1$ )

$$
K=\frac{a_{\mathrm{K}_{2} \mathrm{CO}_{3}(s)} \cdot a_{\mathrm{H}_{2} \mathrm{O}(g)}^{1.5}}{a_{\mathrm{K}_{2} \mathrm{CO}_{3} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(s)}} \approx a_{\mathrm{H}_{2} \mathrm{O}(g)}^{1.5}
$$

b)

$$
\frac{K\left(T_{1}\right)}{K\left(T_{2}\right)}=\frac{a_{\mathrm{H}_{2} \mathrm{O}(g)}^{1.5}\left(T_{1}\right)}{a_{\mathrm{H}_{2} \mathrm{O}(g)}^{1.5}\left(T_{2}\right)} \approx \frac{P^{1.5}\left(T_{1}\right)}{P^{1.5}\left(T_{2}\right)}
$$

Choose in the phase diagram the smallest and largest values on the dehydration transition line:

$$
T_{1}=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}, \quad \text { so } \quad P_{1}=0.1 \mathrm{mbar}=10 \mathrm{~Pa}
$$

and

$$
T_{2}=92.7^{\circ} \mathrm{C}=365.85 \mathrm{~K}, \quad \text { so } \quad P_{2}=100 \mathrm{mbar}=10^{4} \mathrm{~Pa}
$$

leading to

$$
\ln \frac{K\left(T_{2}\right)}{K\left(T_{1}\right)}=\ln \left(\frac{10^{4}}{10}\right)^{1.5}=1.5 \ln 10^{3}=10.36
$$

The van 't Hoff equation then gives

$$
\begin{aligned}
& 10.36=\frac{\Delta H}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)=\frac{\Delta H}{8.314}\left(\frac{1}{273.15}-\frac{1}{365.85}\right)=1.12 \cdot 10^{-4} \Delta H, \quad \text { so } \\
& \Delta H=+92.9 \mathrm{~kJ} / \mathrm{mol} .
\end{aligned}
$$

This is an endothermal result, so the heat is stored during the dehydration reaction.
c)

$$
\Delta_{t r s} G=\Delta_{t r s} H-T_{t r s} \Delta_{t r s} S=0, \quad \text { so } \quad \Delta_{t r s} S=\frac{\Delta_{t r s} H}{T_{t r s}}
$$

Assuming that $\Delta_{t r s} H$ is only weakly dependent on $T$ we find

$$
\Delta_{t r s} S(293.15 \mathrm{~K}) \approx \frac{92.9 \mathrm{~kJ} / \mathrm{mol}}{293.15 \mathrm{~K}}=317 \mathrm{~J} / \mathrm{molK}
$$

d) At $20{ }^{\circ} \mathrm{C}$ we read off from the deliquescence line in the phase diagram a partial vapour pressure of $P_{\mathrm{H}_{2} \mathrm{O}(g)}=10 \mathrm{mbar}=1.0 \mathrm{kPa}$, and using $P_{\text {sat }}\left(\mathrm{H}_{2} \mathrm{O}(g)\right.$ at $\left.20^{\circ} \mathrm{C}\right)=2.330 \mathrm{kPa}$, we find

$$
R H=\frac{1.0}{2.330} \cdot 100 \%=43 \%
$$

## Problem 4

a)

$$
\begin{aligned}
c_{s} & =5.5 \cdot 10^{3} \mathrm{~mol} / \mathrm{m}^{3}, \quad \text { and } \quad c_{l}=\frac{250 \cdot 10^{3} \mathrm{~g} / \mathrm{m}^{3}}{282 \mathrm{~g} / \mathrm{mol}}=0.887 \cdot 10^{3} \mathrm{~mol} / \mathrm{m}^{3}, \mathrm{so} \\
\gamma & =\frac{2}{(36 \pi)^{\frac{1}{3}}}\left(5.5 \cdot 10^{3} \cdot 6.0 \cdot 10^{23}\right)^{\frac{2}{3}} \cdot 1.38 \cdot 10^{-23} \cdot 340 \ln \left(\frac{5.5 \cdot 10^{3}}{0.887 \cdot 10^{3}}\right) \\
& =0.414 \cdot 0.0104 \cdot 1.825=7.86 \cdot 10^{-3} \mathrm{~J} / \mathrm{m}^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& P_{\text {in }}=P_{\text {out }}+\frac{2 \gamma}{r} \text { and } \quad V(r)=\frac{4 \pi}{3} r^{3}=n \Omega=\frac{n}{c_{s} N_{A}}, \text { so } \\
& r=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} V^{\frac{1}{3}}=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} \cdot\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{1}{3}}, \quad \text { and } \\
& \Delta P=\frac{2 \gamma}{r}=\frac{2 \gamma}{\left[\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} \cdot\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{1}{3}}\right]}, \text { so } \\
& \Delta P=\frac{2 \cdot 7.86 \cdot 10^{-3}}{\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}}\left(\frac{6}{5.5 \cdot 10^{3} \cdot 6.0 \cdot 10^{23}}\right)^{\frac{1}{3}}}=\frac{15.7 \cdot 10^{-3}}{0.620 \cdot 1.22 \cdot 10^{-9}}=2.07 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}, \quad \text { so } \\
& P_{\text {in }}=207 \text { bar. }
\end{aligned}
$$

c)

$$
\begin{aligned}
& W_{c}=\gamma \sigma=\gamma 4 \pi R^{2} \quad \text { and } \quad R(n)=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} \cdot\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{1}{3}}, \text { so } \\
& W_{c}(n)=4 \pi\left(\frac{3}{4 \pi}\right)^{\frac{2}{3}} \gamma\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{2}{3}}=\left(\frac{9}{4 \pi}\right)^{\frac{1}{3}} \gamma\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{2}{3}}, \text { for } n \geq 2 \quad \text { and. } \\
& W_{c}(n)=0, \text { for } n=1
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{C(n)}{C(n=1)}=\frac{\exp \left[-\beta W_{c}(n)\right]}{\exp \left[-\beta W_{c}(n=1)\right]}=\exp \left[-\beta W_{c}(n)\right], \quad \text { so } \\
& \frac{C(n)}{C(n=1)}=\exp \left[-\frac{1}{k T}\left(\frac{9}{4 \pi}\right)^{\frac{1}{3}} \gamma\left(\frac{n}{c_{s} N_{A}}\right)^{\frac{2}{3}}\right]
\end{aligned}
$$

For $n=10$ we find

$$
\frac{C(10)}{C(n=1)}=\exp \left[-\frac{1.47 \cdot 10^{-20}}{1.38 \cdot 10^{-23} \cdot 340}\right]=0.044=4.4 \%
$$

