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Exam Thermodynamics 2
03 November 2021

Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets.
Put your name and student number on each sheet.

The examination time is 12:45 until 15:45, so three hours.
There are 4 problems, with each 4 subproblems, a list of constants and a formulae sheet,

6 pages in total.
All 16 subproblems have equal weight for the final grade.

Problem 1

a) Give a definition and short description of the following concepts
-Equipartition theorem
-Henry constant
-Isopleth
-Critical nucleus
-Solubility

b) Give the characteristic equation for the Helmlholtz free energy for an open system with
two components A and B and electric work; use it to find a Maxwell relation between the
chemical potential of component B and the entropy.

c) Give the meaning of all symbols in the following formula as well as a description of its use
in thermodynamic problems.
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i
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d) The mean activity coefficient of AgCl dissolved in water at T = 298.15 K is determined to
be γ± = 0.900, using the Debye-Hückel limiting law.
Use the Debye-Hückel limiting law to find the mean activity coefficient at T = 275.00 K of
that solution with the same molality.
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Problem 2

The excess volume of a mixture is defined as V E ≡ V − Videal, in which V is the real volume
and Videal is the volume of an ideal mixture, i.e. a mixture in which all molecules have the same
interactions, no matter the type.
A mixture of two compounds (compound A and compound B) has a molar excess volume of
V Em = xAxB (a0 + a1(xA − xB)) at a temperature T0. xi = ni/n represents the mole fraction of
component i, a0 = −2.4697 cm3/mol and a1 = 0.0608 cm3/mol. The molar volumes of the pure
compounds at T0 are Vm,A = 76.00 cm3/mol and Vm,B = 77.00 cm3/mol.

a) Find an expression for the partial molar volumes of a binary ideal mixture in terms of the
molar volumes.

b) Using the terms of the molar volumes, a0, a1, xA and xB at the temperature T0, show that
the partial molar volumes VA and VB of the compounds in the mixture are given by

VA = Vm,A + a0x
2
B + a1 (3xA − xB)x2B , and

VB = Vm,B + a0x
2
A + a1 (xA − 3xB)x2A.

Hint: First rewrite V E = (nA + nB)V Em in terms of nA and nB .

c) Calculate the partial molar volumes of both components in an equimolar mixture, at T0.

d) Calculate the mole fraction xB , at T0, for which the partial molar volumes of the two
components in the solution are equal, for the case that we can neglect the (relatively small)
value of a1.

Problem 3

Currently there is quite some research going on in the field of energy storage. Heat for warming
houses and industrial processes is the major form of energy consumption in the world. Therefore,
it would be beneficial to use the solar heat for that, but that demands for storage during summer
time and reuse of the stored heat during winter time.
A promising method for heat storage is to use the heat exchange during a phase transition between
different hydration states of a salt. The general reaction for such a phase transition is

SALT · nH2O(s) � SALT ·mH2O(s) + (n−m) H2O(g).

The released water vapour is collected and stored in a separate tank, and is reused for the reverse
reaction.
A promising example is potassium carbonate, which has a stable hydrate K2CO3 · 1.5H2O, the
so-called sesquihydrate, and a stable anhydrate K2CO3, both depending on the conditions.
In the figure below the (PH2O − T ) phase diagram of the (s-g) system is given, where PH2O is the
partial pressure of the water vapour in the system.

a) Show that the equilibrium constant K of the reaction between the anhydrate K2CO3 and
the sesquihydrate K2CO3 · 1.5H2O only depends on the activity aH2O(g) and determine K
in terms of aH2O(g).

b) Use the data in the phase diagram to determine the enthalpy change for the dehydration
transition, so ∆H(K2CO3·1.5H2O→ K2CO3), and discuss what the direction of the reaction
is when heat is stored in the salt.
Hint: assume that the water vapour can be treated as a perfect gas and that the enthalpy
change is independent of the temperature, so we can use the van’t Hoff equation
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c) Use the result of the former part to find the entropy change for the dehydration transition
at 20 ◦C.

d) Deliquescence is the process by which a substance absorbs water vapour from the atmosphere
until it dissolves in the absorbed water and forms a solution. Deliquescence occurs when
the partial pressure of water vapour in the environment is equal to (or larger than) than the
equilibrium vapour pressure of the salt.
The relative humidity at temperature T is defined as the actual partial pressure of water
vapour in the air as a fraction of the maximum (equilibrium) partial pressure of water vapour
at that temperature:

RH =
PH2O

P satH2O

× 100 %

At 20 ◦C the vapour pressure of bulk water is 2.330 kPa.
Use the phase diagram to estimate the relative humidity for which deliquescence starts at
20 ◦C .
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Problem 4

We study the spontaneous formation of clusters of molecules in an aqueous solution of the para-
chlorobenzenesulphonate salt of the amino acid alanine (ALACBS; M = 282 g/mol) at 340 K.
Such clusters are continuously formed and dissociated leading to an average size distribution which
is temperature dependent.
We restrict our study to a saturated solution of the salt and assume that all clusters can be
considered as having a spherical shape with an isotropic surface tension γ.
In 1990 Mersmann deduced a relation between the solubility cl of a compound and the surface
tension γ for the interface between the solid (in the present case the clusters) and the saturated
solution, according to

γ =
2

(36π)
1/3

(csNA)
2/3

kT ln

[
cs
cl

]
.

In this expression cs is the density of the compound in its solid phase, which in the present case
is cs = 5.5 · 103 mol/m3 and cl = 250 mg/mL is the solubility of the salt. All other symbols have
the usual meaning.

a) Calculate the surface tension γ for the saturated ALACBS solution, in J/m2.

b) Calculate the pressure inside a spherical cluster, containing n = 6 ALACBS-molecules, under
standard conditions.

c) Show that the work Wc(n) for the formation of a cluster of n molecules in the solution is
given by

Wc(n) =

(
9

4π

)1/3

γ

[
n

csNA

]2/3
.

Hint: For a saturated solution there is no difference between the chemical potential of a
molecule in solution and the chemical potential of a molecule in the (bulk) solid phase.

d) Let C(n) be the average concentration of clusters having n ALACBS-molecules. Clusters
having only a single ALACBS-molecule can be regarded as a dissolved molecule.
Use the Boltzmann distribution function to find an expression for the concentration ratio
C(n)
C(1) and determine its value for n = 10.

List of constants

Elementary charge e 1.602 · 10−19 C
Faraday’s constant F 9.648 · 104 Cmol−1

Vacuum dielectric constant ε0 8.854 · 10−12 C2J−1m−1

Boltzmann’s constant k 1.381 · 10−23 JK−1

Planck’s constant h 6.626 · 10−34 Js
Bohr magneton µB 9.274 · 10−24 JT−1

Atomic mass constant mu 1.661 · 10−27 kg
Amadeo Avogadro di Quaregna e Ceretto’s constant NA 6.022 · 1023 mol−1

Gas constant R 8.314 JK−1mol−1

Free fall acceleration g 9.807 ms−2

Unit of energy 1 cal = 4.184 J
Standard pressure P� 1 bar = 105 Nm−2 = 0.9869 atm = 750 Torr
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Formulae Thermodynamics (1)

PV = nRT = NkT

U =
3

2
nRT =

3

2
NkT

∆U = W +Q

dW = −Pext.dV + dW ′ and dW ′max = (dG)P,T

dQ|P = CPdT and dQ|V = CV dT

Q1

Q2
= −T1

T2

dS =
dQrev

T
≥ dQ

T

dStot = dS + dSomg ≥ 0

dU = −PdV + TdS +
∑
i

µidni

H = U + PV

dH = V dP + TdS +
∑
i

µidni

A = U − TS

dA = −PdV − SdT +
∑
i

µidni

G = H − TS

dG = V dP − SdT +
∑
i

µidni

∆rG =

(
∂G

∂ξ

)
P,T

= ∆rG
� +RT lnQ, where Q =

∏
i

aνii

RT lnK = −∆rG
�

E = E� − RT

νF
lnQ and dW ′ = Edq and E = IR and P = EI

µi = µ�
i +RT ln ai = µ�

i +RT ln
Pi
P�

GP,T =
∑
i

µini

∑
j

njdµj = 0

∆T =

(
RT ∗2

∆trsH

)
xB

∆S = −nR (xA lnxA + xB lnxB)

Π = [B]RT =
nB
V
RT

S = k lnW

ni
N

=
exp −εikT

q
, where q =

∑
i

exp
−εi
kT

and < X >= N < x >= N
∑
i

xi
ni
N
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Formulae Thermodynamics 2(
∂V

∂T

)
P,W ′,ni

= −
(
∂S

∂P

)
T,W ′,ni

Xi =

(
∂X

∂ni

)
P,T,nj 6=i∑

j

njdµj = 0

Pj = xjP
∗
j

Pj = yjP

PB = xBKB(
∂µβ
∂P

)
T

−
(
∂µα
∂P

)
T

= ∆trsV(
∂µβ
∂T

)
P

−
(
∂µα
∂T

)
P

= −∆trsS

P = P ∗ exp

(
Vm∆P

RT

)
dP

dT
=

∆trsS

∆trsV
=

∆trsH

T∆trsV

d lnP

dT
≈ ∆trsH

RT 2

∆T =

(
RT ∗2

∆trsH

)
xB lnxB =

∆fusH

R

[
1

Tfus
− 1

T

]
µ = µ� +RT ln a = µ� +RT lnx+RT ln γ

µ = µ� +RT ln a = µ� +RT ln
b

b�
+RT ln γ

F = C − P + 2

nαlα = nβlβ

∆solvG
� = −z

2
i e

2NA
8πε0ri

(
1− 1

εr

)
γ± =

(
γp+γ

q
−
) 1

p+q

log γ± = −|z+z−|A
√
I

I =
1

2

∑
i

z2i
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A =
F 3

4πNA ln 10

(
ρb�

2ε3R3T 3

) 1
2

Pin = Pout +
2γ

r
P = ρgh wad = γsg + γlg − γsl γsg = γsl + γlg cos Θc


