Solutions Exam MOL040, Thermodynamics 2 23 January 2019

All 16 subproblems have equal weight for the final grade.
Sometimes a NOTE is added, just meant as an explanation or advise.

Problem 1

a) Note, that the answers below to part a) are not unique, in some cases overcomplete and are meant to be indicative.

- Triple point: A point in a phase diagram where three different phases are in mutual equilibrium.
- First order phase transition: A transition between two phases for which the first derivative of the chemical potential with respect to the temperature is discontinuous. Consequently the change in volume, enthalpy, entropy will be non-zero.
- Regular solution: A solution for which the excess enthalpy on mixing $\Delta H^{\mathrm{E}} \neq 0$, but the excess entropy $\Delta S^{\mathrm{E}}=0$.
- Molality: The amount of a component i in a mixture in terms of its amount in number of moles divided by the mass of the solvent in $\mathrm{kg} . m_{i}=\frac{n_{i}}{\mathrm{~kg} \text { of solvent }}$.
$-\mathrm{pH}: \mathrm{pH} \equiv-\log a\left(\mathrm{H}^{+}\right)$, where $a\left(\mathrm{H}^{+}\right)$is the activity of the H^{+}ions in the solution.
b)

$$
\begin{aligned}
& \mathrm{d} G=V \mathrm{~d} P-S \mathrm{~d} T+\mu_{A} \mathrm{~d} n_{A}+\mu_{B} \mathrm{~d} n_{B}+E \mathrm{~d} q \\
& \left(\frac{\partial \mu_{A}}{\partial q}\right)_{P, T, n_{A}, n_{B}}=\left(\frac{\partial E}{\partial n_{A}}\right)_{P, T, n_{B}, q}
\end{aligned}
$$

c) Partial molar value of X, with respect to component i at constant temperature and pressure. X : any function, e.g. volume, Gibbs free energy, etc.
i : component i
n : amount/number of moles
P : pressure of the system/mixture
T : temperature of the system/mixture
d) Use the Bolzmann definition of entropy

$$
S=k \ln W, \quad \text { so } \quad \Delta_{t r s} S=k \ln W^{\prime}-k \ln W=k \ln \frac{W^{\prime}}{W}, \quad \text { or } \quad W^{\prime}=W \exp \left[\frac{\Delta_{t r s} S}{k}\right]
$$

At the phase transition (Clapeyron equation)

$$
\frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{\Delta_{t r s} S}{\Delta_{t r s} V}, \quad \text { so } \quad \Delta S_{t r s}=\left(\frac{\mathrm{d} P}{\mathrm{~d} T}\right) \Delta_{t r s} V
$$

Combining this with the earlier result, we find

$$
W^{\prime}=W \exp \left[\frac{1}{k}\left(\frac{\mathrm{~d} P}{\mathrm{~d} T}\right) \Delta_{t r s} V\right]
$$

For a transition from solid to gas, the value of $\left(\frac{d P}{d T}\right)$ is negligible for the solid, while for the gas phase it follows from the equation of state $P V=n R T$, so $\left(\frac{\mathrm{d} P}{\mathrm{~d} T}\right) \approx\left(\frac{\mathrm{d} P_{g}}{\mathrm{~d} T}\right)=\frac{n_{g} R}{V_{g}}$, so we get $(n R=N k)$

$$
W^{\prime} \approx W \exp \left[\frac{n_{g} R}{k} \frac{\Delta_{t r s} V}{V_{g}}\right]=W \exp \left[N_{g} \frac{V_{g}-V_{s}}{V_{g}}\right]=W \exp \left[N_{g}\left(1-\frac{V_{s}}{V_{g}}\right)\right]
$$

Problem 2

a)

$$
\begin{aligned}
& \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \\
& \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Hg}(\mathrm{l})+2 \mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned}
$$

b)

$$
\Delta_{r} G=-\nu F E=-2 \cdot 9.648 \cdot 10^{4} \cdot 0.046=-8.876 \mathrm{~kJ} / \mathrm{mol}
$$

c) At constant pressure $(\mathrm{d} P=0)$:

$$
\mathrm{d} H=\mathrm{d} Q+V \mathrm{~d} P+E \mathrm{~d} q=\mathrm{d} Q+E \mathrm{~d} q .
$$

Reversibly, so
$\Delta_{r} H=Q^{r e v}+E \Delta q=Q^{r e v}+W^{m a x}=Q^{r e v}-\Delta_{r} G=11.08 \mathrm{~kJ} / \mathrm{mol}, \quad$ so $\quad Q^{r e v}=11.08-(-8.876)=19.96 \mathrm{~kJ} / \mathrm{mol}$.
d)

$$
\begin{aligned}
& \mathrm{d} G=V \mathrm{~d} P-S \mathrm{~d} T+E \mathrm{~d} q, \quad \text { so } \quad\left(\frac{\partial E}{\partial T}\right)_{P, q}=-\left(\frac{\partial S}{\partial q}\right)_{P, T}=-\frac{1}{T}\left(\frac{\partial Q^{r e v}}{\partial q}\right)_{P, T} . \\
& \left(\frac{\partial E}{\partial T}\right)_{P, q}=-\frac{1}{T} \frac{\mathrm{~d} Q^{\text {rev }}}{\mathrm{d} q}=-\frac{1}{298} \cdot \frac{19.96 \cdot 10^{3}}{-2 \cdot 9.648 \cdot 10^{4}}=3.47 \cdot 10^{-4} \mathrm{~V} / \mathrm{K}=0.347 \mathrm{mV} / \mathrm{K}
\end{aligned}
$$

Problem 3

a) The results can be found in Figure 1 for the various regions:

1: R-MSA(s) $+(\mathrm{R}-\mathrm{MSA}+\mathrm{S}-\mathrm{IPSA})(\mathrm{l})$
2: (R-MSA + S-IPSA)(1)
3: $(\mathrm{R}-\mathrm{MSA} / \mathrm{S}-\mathrm{IPSA})(\mathrm{s})+(\mathrm{R}-\mathrm{MSA}+\mathrm{S}-\mathrm{IPSA})(\mathrm{l})$
4: $(\mathrm{R}-\mathrm{MSA} / \mathrm{S}-\mathrm{IPSA})(\mathrm{s})+(\mathrm{R}-\mathrm{MSA}+\mathrm{S}-\mathrm{IPSA})(\mathrm{l})$
5: S-IPSA $(\mathrm{s})+(\mathrm{R}-\mathrm{MSA}+\mathrm{S}-\mathrm{IPSA})(\mathrm{l})$
6: S-IPSA(s) $+($ R-IPSA + S-IPSA $)(1)$
7: (R-IPSA + S-IPSA)(1)
8: $(\mathrm{R}-\mathrm{IPSA} / \mathrm{S}-\mathrm{IPSA})(\mathrm{s})+(\mathrm{R}-\mathrm{IPSA}+\mathrm{S}-I P S A)(\mathrm{l})$
9: $(\mathrm{R}-\mathrm{IPSA} / \mathrm{S}-\mathrm{IPSA})(\mathrm{s})+(\mathrm{R}-\mathrm{IPSA}+\mathrm{S}-\mathrm{IPSA})(\mathrm{l})$
10: R-IPSA $(\mathrm{s})+(\mathrm{R}-\mathrm{IPSA}+\mathrm{S}-I P S A)(\mathrm{l})$
11: (R-IPSA + R-MSA)(l)
12: R-MSA(s) $+(\mathrm{R}-\mathrm{MSA} / \mathrm{S}-\mathrm{IPSA})(\mathrm{s})$
13: (R-MSA/S-IPSA)(s) + S-IPSA(s)
14: S-IPSA(s) + (S-IPSA/R-IPSA) (s)
15: (S-IPSA/R-IPSA)(s) + R-IPSA(s)
16: R-IPSA(s) + (R-IPSA $+\mathrm{R}-\mathrm{MSA})(\mathrm{l})$
17: R-MSA $(\mathrm{s})+(\mathrm{R}-\mathrm{IPSA}+\mathrm{R}-\mathrm{MSA})(\mathrm{l})$
18: R-IPSA(s) + R-MSA(s)
NOTE: Advised but not necessary is putting the further data in the graph (see Figure 2).

Figure 1: NOTE: All shaded areas are two-phase regions.

Figure 2: The futher data have been added to the phase diagram.
b) Because the phase equilibrium can be considered as linear we can use the approximate expression for freezing point depression

$$
\Delta T=\left(\frac{R T^{* 2}}{\Delta_{t r s} H}\right) x_{B}=\left(\frac{R\left(T_{\mathrm{R}-\mathrm{MSA}}^{*}\right)^{2}}{\Delta_{\mathrm{fus}, \mathrm{R}-\mathrm{MSA}} H^{*}}\right) x_{\mathrm{S}-\mathrm{IPSA}}
$$

Note: the mole fraction values run between 0 and 1 for each of the three parts of the phase diagram (R-MSA to S-IPSA, S-IPSA to R-IPSA and R-IPSA to R-MSA).
The slope of the linear line is given by

$$
\frac{\mathrm{d} \Delta T}{\mathrm{~d} x_{B}}=\frac{R T^{* 2}}{\Delta_{\mathrm{fus}} H^{*}}=\frac{114.0-88.0}{0.35-0}=74.29 \text { degrees } \mathrm{K}
$$

so

$$
\Delta_{\mathrm{fus}} H *=\frac{R T^{* 2}}{\frac{\mathrm{~d} \Delta T}{\mathrm{~d} x_{B}}}=\frac{8.314 \cdot(273.15+114.0)^{2}}{74.29}=\frac{1.246 \cdot 10^{6}}{74.29}=16.77 \mathrm{~kJ} / \mathrm{mol}
$$

Alternatively you can use (see also problem 3d)

$$
\ln x_{B}=\frac{\Delta_{\mathrm{fus}} H^{*}}{R}\left(\frac{1}{T_{\mathrm{fus}}^{*}}-\frac{1}{T}\right)
$$

leading to the same result.
c)

$$
\frac{n_{l}}{n_{s}}=\frac{l_{s}}{l_{l}}=\frac{1-0.7}{0.7-0.29}=\frac{0.3}{0.41}=0.73
$$

d) Use the notation $\mathrm{RS}=\mathrm{R}-\mathrm{ISPA} / \mathrm{S}-\mathrm{IPSA}, \mathrm{R}=\mathrm{R}$-ISPA and $\mathrm{S}=\mathrm{S}-\mathrm{IPSA}$.

$$
\mu_{\mathrm{RS}(\mathrm{~s})}^{*}=\mu_{\mathrm{RS}(1)}^{*}+R T \ln a_{\mathrm{RS}(\mathrm{l})}, \quad \text { so } \quad-\Delta_{\mathrm{fus}} G_{m}^{*}(R S)=R T \ln a_{\mathrm{RS}(1)}
$$

Because for the pure component at $T_{\text {fus }}^{*}$

$$
\Delta_{\text {fus }} G_{m}^{*}(R S)\left(T_{\text {fus }}^{*}\right)=0 \quad \text { it follows that } \quad \Delta_{\text {fus }} H_{m}^{*}(R S)\left(T_{\text {fus }}^{*}\right)-T_{\text {fus }}^{*} \Delta_{\text {fus }} S_{m}^{*}(R S)\left(T_{\text {fus }}^{*}\right)=0,
$$

so

$$
\Delta_{\mathrm{fus}} S_{m}^{*}(R S)\left(T_{\mathrm{fus}}^{*}\right)=\frac{\Delta_{\mathrm{fus}} H_{m}^{*}(R S)\left(T_{\mathrm{fus}}^{*}\right)}{T_{\mathrm{fus}}^{*}},
$$

we find

$$
-\frac{\Delta_{\mathrm{fus}} H_{m}^{*}(R S)\left(T_{\mathrm{fus}}^{*}\right)}{R}\left[\frac{1}{T}-\frac{1}{T_{\mathrm{fus}}^{*}}\right]=\ln a_{\mathrm{RS}(1)}
$$

so for $T=T_{e}$ we find

$$
-\frac{\Delta_{\mathrm{fus}} H_{m}^{*}(R S)}{R}\left[\frac{1}{T_{e}}-\frac{1}{T_{\mathrm{fus}}^{*}}\right]=\ln a_{\mathrm{RS}(1)}=\ln x_{\mathrm{RS}(1)}+\ln \gamma_{\mathrm{RS}(1)}
$$

plugging in the values we find

$$
\begin{aligned}
& -\frac{25.05 \cdot 10^{3}}{8.314}\left[\frac{1}{273.15+85.5}-\frac{1}{273.15+115}\right]=\ln (1-2 \cdot 0.05)+\ln \gamma_{\mathrm{RS}(1)}, \quad \text { so } \quad \ln \gamma_{\mathrm{RS}(1)}=-0.5331, \quad \text { and } \\
& \gamma_{\mathrm{RS}(1)}=0.59
\end{aligned}
$$

Problem 4

a) For that we need the Kelvin equation

$$
\begin{aligned}
& P=P^{*} \exp \left[\frac{V_{m} \Delta P}{R T}\right], \quad \text { with } \Delta P=\frac{2 \gamma}{r} \\
& \begin{aligned}
& \log P^{*}(298 \mathrm{~K})=45.465-\frac{4044}{298}-13.21 \log 298+1.098 \cdot 10^{-7} \cdot 298+6.415 \cdot 10^{-6} \cdot 298^{2} \\
&=45.465-13.57-32.68+3.27 \cdot 10^{-5}+0.570=-0.215, \quad \text { so }
\end{aligned} \\
& \begin{array}{r}
P^{*}(298 \mathrm{~K})=0.609 \mathrm{Torr}=\frac{0.609}{750}=0.812 \mathrm{mbar}
\end{array} \\
& \begin{array}{r}
\Delta P=\frac{2 \gamma}{r}=\frac{2 \cdot 43.8 \cdot 10^{-3}}{0.5 \cdot 10^{-6}}=175.2 \cdot 10^{3} \mathrm{~Pa}
\end{array} \\
& V_{m}=\frac{M}{\rho}=\frac{78.13}{1.1004} \mathrm{~cm}^{3} / \mathrm{mol}
\end{aligned}
$$

Putting these values into the Kelvin equation results in

$$
P=0.812 \exp \left[\frac{71.0 \cdot 10^{-6} \cdot 175.2 \cdot 10^{3}}{8.314 \cdot 298}\right]=0.816 \mathrm{mbar}=0.612 \text { Torr. }
$$

b) Because $\gamma=\gamma\left(T_{v} a p(r)\right)$, we first determine its value

$$
\gamma\left(T_{v a p}\right)=G\left(1-\frac{T_{v a p}}{T_{c}}\right)^{n}=93.26 \cdot 10^{-3}\left(1-\frac{462.15}{726}\right)^{1.43}=21.93 \mathrm{mN} / \mathrm{m}
$$

Plugging in all values into the equation for $T_{v a p}^{\prime}(r)$ gives $\left(P=P^{\ominus}\right)$

$$
T_{\text {vap }}^{\prime}\left(0.5 \cdot 10^{-6}\right)=\frac{462.15}{1-\frac{8.314 \cdot 462.15}{42.70 \cdot 10^{3}} \ln \left[1+\frac{2 \cdot 21.93 \cdot 10^{-3}}{10^{5} \cdot 0.5 \cdot 10^{-6}}\right]}=\frac{462.15}{1-0.0900 \ln 1.877}=490 \mathrm{~K}
$$

c) For higher temperatures T the surface tension $\gamma(T)$ will be smaller, so $T_{v a p}^{\prime}$ will become closer to $T_{\text {vap }}$.
Furthermore $\Delta_{v a p} H_{m}$ is in reality dependent on T; For increasing temperatures T the vaporization enthalpy will decrease, so $T_{v a p}^{\prime}$ will become closer to $T_{v a p}$.
In practice nucleation of the gas bubble will be heterogeneous, that is, will nucleate on foreign surfaces, like dust or the wall of the vessel, resulting in a smaller effective surface tension.
d) Along the phase boundary line (the liquid-vapour coexistence line)

$$
\begin{aligned}
& \mathrm{d} \mu_{g}=\mathrm{d} \mu_{l}, \quad \text { so } \quad\left(V_{m} \mathrm{~d} P-S_{m} \mathrm{~d} T\right)_{g}=\left(V_{m} \mathrm{~d} P-S_{m} \mathrm{~d} T\right)_{l}, \quad \text { or } \\
& \left(S_{m}^{g}-S_{m}^{l}\right) \mathrm{d} T=\left(V_{m}^{g}-V_{m}^{l}\right) \mathrm{d} P \approx V_{m}^{g} \mathrm{~d} P .
\end{aligned}
$$

Using the equation of state for a perfect gas $\left(P V_{m}=R T\right)$ we find

$$
\left(\frac{R T}{P} \mathrm{~d} P\right)_{g}=\left(S_{m}^{g}-S_{m}^{l}\right) \mathrm{d} T, \quad \text { so } \quad R\left(\frac{\mathrm{~d} P}{P}\right)_{g}=\left(S_{m}^{g}-S_{m}^{l}\right) \frac{\mathrm{d} T}{T}
$$

On the phase boundary line it also holds that

$$
\mu_{g}=\mu_{l}, \quad \text { so } \quad H_{m}^{g}-T S_{m}^{g}=H_{m}^{l}-T S_{m}^{l}, \quad \text { or } \quad S_{m}^{g}-S_{m}^{l}=\frac{H_{m}^{g}-H_{m}^{l}}{T}
$$

which we substitute in the equation for $R\left(\frac{\mathrm{~d} P}{P}\right)_{g}$:

$$
R\left(\frac{\mathrm{~d} P}{P}\right)_{g}=\left(H_{m}^{g}-H_{m}^{l}\right) \frac{\mathrm{d} T}{T^{2}}
$$

Integrating both sides we get (the gas in the bubble will have a higher pressure $P^{\ominus}+\Delta P=$ $P^{\ominus}+\frac{2 \gamma}{r}$; assume that γ is independent of T)

$$
\int_{P^{\ominus}}^{P^{\ominus}+\frac{2 \gamma}{r}} \frac{\mathrm{~d} P}{P}=\frac{\left(H_{m}^{g}-H_{m}^{l}\right)}{R} \int_{T_{\text {vap }}}^{T_{v a p}^{\prime}} \frac{\mathrm{d} T}{T^{2}}, \quad \text { so } \quad \ln \frac{P^{\ominus}+\frac{2 \gamma}{r}}{P^{\ominus}}=\frac{\Delta_{v a p} H_{m}}{R}\left[\frac{1}{T_{v a p}}-\frac{1}{T_{v a p}^{\prime}}\right]
$$

Rearranging the expression we find

$$
T_{v a p}^{\prime}=\frac{T_{v a p}}{1-\frac{R T_{v a p}}{\Delta_{v a p} H_{m}} \ln \left[1+\frac{2 \gamma}{P \rho_{r}}\right]}
$$

