
Solutions Exam MOL040, Thermodynamics 2
23 January 2019

All 16 subproblems have equal weight for the final grade.
Sometimes a NOTE is added, just meant as an explanation or advise.

Problem 1

a) Note, that the answers below to part a) are not unique, in some cases overcomplete and are
meant to be indicative.

– Triple point: A point in a phase diagram where three different phases are in mutual
equilibrium.

– First order phase transition: A transition between two phases for which the first deriva-
tive of the chemical potential with respect to the temperature is discontinuous. Conse-
quently the change in volume, enthalpy, entropy will be non-zero.

– Regular solution: A solution for which the excess enthalpy on mixing ∆HE 6= 0, but
the excess entropy ∆SE = 0.

– Molality: The amount of a component i in a mixture in terms of its amount in number
of moles divided by the mass of the solvent in kg. mi = ni

kg of solvent .

– pH: pH ≡ − log a(H+), where a(H+) is the activity of the H+ ions in the solution.

b)

dG = V dP − SdT + µAdnA + µBdnB + Edq(
∂µA
∂q

)
P,T,nA,nB

=

(
∂E

∂nA

)
P,T,nB ,q

c) Partial molar value of X, with respect to component i at constant temperature and pressure.
X: any function, e.g. volume, Gibbs free energy, etc.
i: component i
n: amount/number of moles
P : pressure of the system/mixture
T : temperature of the system/mixture

d) Use the Bolzmann definition of entropy

S = k lnW, so ∆trsS = k lnW ′ − k lnW = k ln
W ′

W
, or W ′ = W exp

[
∆trsS

k

]
.

At the phase transition (Clapeyron equation)

dP

dT
=

∆trsS

∆trsV
, so ∆Strs =

(
dP

dT

)
∆trsV.

Combining this with the earlier result, we find

W ′ = W exp

[
1

k

(
dP

dT

)
∆trsV

]
.
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For a transition from solid to gas, the value of
(

dP
dT

)
is negligible for the solid, while for the

gas phase it follows from the equation of state PV = nRT , so
(

dP
dT

)
≈
(

dPg
dT

)
=

ngR
Vg

, so we

get (nR = Nk)

W ′ ≈W exp

[
ngR

k

∆trsV

Vg

]
= W exp

[
Ng

Vg − Vs
Vg

]
= W exp

[
Ng

(
1− Vs

Vg

)]
.

Problem 2

a)

Ag(s) + Cl−(aq)→ AgCl(s) + e−

Hg2Cl2(s) + 2e− → 2Hg(l) + 2Cl−(aq)

b)

∆rG = −νFE = −2 · 9.648 · 104 · 0.046 = −8.876 kJ/mol.

c) At constant pressure (dP = 0):

dH = dQ+ V dP + Edq = dQ+ Edq.

Reversibly, so

∆rH = Qrev+E∆q = Qrev+Wmax = Qrev−∆rG = 11.08 kJ/mol, so Qrev = 11.08−(−8.876) = 19.96 kJ/mol.

d)

dG = V dP − SdT + Edq, so

(
∂E

∂T

)
P,q

= −
(
∂S

∂q

)
P,T

= − 1

T

(
∂Qrev

∂q

)
P,T

.

(
∂E

∂T

)
P,q

= − 1

T

dQrev

dq
= − 1

298
· 19.96 · 103

−2 · 9.648 · 104
= 3.47 · 10−4 V/K = 0.347 mV/K.

Problem 3

a) The results can be found in Figure 1 for the various regions:
1: R-MSA(s) + (R-MSA + S-IPSA)(l)
2: (R-MSA + S-IPSA)(l)
3: (R-MSA/S-IPSA)(s) + (R-MSA + S-IPSA)(l)
4: (R-MSA/S-IPSA)(s) + (R-MSA + S-IPSA)(l)
5: S-IPSA(s) + (R-MSA + S-IPSA)(l)
6: S-IPSA(s) + (R-IPSA + S-IPSA)(l)
7: (R-IPSA + S-IPSA)(l)
8: (R-IPSA/S-IPSA)(s) + (R-IPSA + S-IPSA)(l)
9: (R-IPSA/S-IPSA)(s) + (R-IPSA + S-IPSA)(l)
10: R-IPSA(s) + (R-IPSA + S-IPSA)(l)
11: (R-IPSA + R-MSA)(l)
12: R-MSA(s) + (R-MSA/S-IPSA)(s)
13: (R-MSA/S-IPSA)(s) + S-IPSA(s)
14: S-IPSA(s) + (S-IPSA/R-IPSA)(s)
15: (S-IPSA/R-IPSA)(s) + R-IPSA(s)
16: R-IPSA(s) + (R-IPSA + R-MSA)(l)
17: R-MSA(s) +(R-IPSA + R-MSA)(l)
18: R-IPSA(s) + R-MSA(s)
NOTE: Advised but not necessary is putting the further data in the graph (see Figure 2).
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Figure 1: NOTE: All shaded areas are two-phase regions.
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Figure 2: The futher data have been added to the phase diagram.

b) Because the phase equilibrium can be considered as linear we can use the approximate
expression for freezing point depression

∆T =

(
RT ∗2

∆trsH

)
xB =

(
R
(
T ∗R−MSA

)2
∆fus,R−MSAH

∗

)
xS−IPSA.

Note: the mole fraction values run between 0 and 1 for each of the three parts of the phase
diagram (R-MSA to S-IPSA, S-IPSA to R-IPSA and R-IPSA to R-MSA).
The slope of the linear line is given by

d∆T

dxB
=

RT ∗2

∆fusH
∗ =

114.0− 88.0

0.35− 0
= 74.29 degrees K,

so

∆fusH∗ =
RT ∗2

d∆T
dxB

=
8.314 · (273.15 + 114.0)

2

74.29
=

1.246 · 106

74.29
= 16.77 kJ/mol.

Alternatively you can use (see also problem 3d)

lnxB =
∆fusH

∗

R

(
1

T ∗fus

− 1

T

)
,

leading to the same result.
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c)

nl
ns

=
ls
ll

=
1− 0.7

0.7− 0.29
=

0.3

0.41
= 0.73.

d) Use the notation RS = R-ISPA/S-IPSA, R = R-ISPA and S = S-IPSA.

µ∗RS(s) = µ∗RS(l) +RT ln aRS(l), so −∆fusG
∗
m(RS) = RT ln aRS(l).

Because for the pure component at T ∗fus

∆fusG
∗
m(RS)(T ∗fus) = 0 it follows that ∆fusH

∗
m(RS)(T ∗fus)−T ∗fus∆fusS

∗
m(RS)(T ∗fus) = 0,

so

∆fusS
∗
m(RS)(T ∗fus) =

∆fusH
∗
m(RS)(T ∗fus)

T ∗fus

,

we find

−∆fusH
∗
m(RS)(T ∗fus)

R

[
1

T
− 1

T ∗fus

]
= ln aRS(l),

so for T = Te we find

−∆fusH
∗
m(RS)

R

[
1

Te
− 1

T ∗fus

]
= ln aRS(l) = lnxRS(l) + ln γRS(l).

plugging in the values we find

−25.05 · 103

8.314

[
1

273.15 + 85.5
− 1

273.15 + 115

]
= ln (1− 2 · 0.05)+ln γRS(l), so ln γRS(l) = −0.5331, and

γRS(l) = 0.59.

Problem 4

a) For that we need the Kelvin equation

P = P ∗ exp

[
Vm∆P

RT

]
, with ∆P =

2γ

r

logP ∗(298 K) = 45.465− 4044

298
− 13.21 log 298 + 1.098 · 10−7 · 298 + 6.415 · 10−6 · 2982

= 45.465− 13.57− 32.68 + 3.27 · 10−5 + 0.570 = −0.215, so

P ∗(298 K) = 0.609 Torr =
0.609

750
= 0.812 mbar.

∆P =
2γ

r
=

2 · 43.8 · 10−3

0.5 · 10−6
= 175.2 · 103 Pa.

Vm =
M

ρ
=

78.13

1.1004
cm3/mol.

Putting these values into the Kelvin equation results in

P = 0.812 exp

[
71.0 · 10−6 · 175.2 · 103

8.314 · 298

]
= 0.816 mbar = 0.612 Torr.
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b) Because γ = γ(Tvap(r)), we first determine its value

γ(Tvap) = G

(
1− Tvap

Tc

)n
= 93.26 · 10−3

(
1− 462.15

726

)1.43

= 21.93 mN/m.

Plugging in all values into the equation for T ′vap(r) gives (P = P�)

T ′vap(0.5 · 10−6) =
462.15

1− 8.314·462.15
42.70·103 ln

[
1 + 2·21.93·10−3

105·0.5·10−6

] =
462.15

1− 0.0900 ln 1.877
= 490 K.

c) For higher temperatures T the surface tension γ(T ) will be smaller, so T ′vap will become
closer to Tvap.
Furthermore ∆vapHm is in reality dependent on T ; For increasing temperatures T the va-
porization enthalpy will decrease, so T ′vap will become closer to Tvap.
In practice nucleation of the gas bubble will be heterogeneous, that is, will nucleate on
foreign surfaces, like dust or the wall of the vessel, resulting in a smaller effective surface
tension.

d) Along the phase boundary line (the liquid-vapour coexistence line)

dµg = dµl, so (VmdP − SmdT )g = (VmdP − SmdT )l , or(
Sgm − Slm

)
dT =

(
V gm − V lm

)
dP ≈ V gmdP.

Using the equation of state for a perfect gas (PVm = RT ) we find(
RT

P
dP

)
g

=
(
Sgm − Slm

)
dT, so R

(
dP

P

)
g

=
(
Sgm − Slm

) dT

T
.

On the phase boundary line it also holds that

µg = µl, so Hg
m − TSgm = H l

m − TSlm, or Sgm − Slm =
Hg
m −H l

m

T
,

which we substitute in the equation for R
(

dP
P

)
g
:

R

(
dP

P

)
g

=
(
Hg
m −H l

m

) dT

T 2
.

Integrating both sides we get (the gas in the bubble will have a higher pressure P� + ∆P =
P� + 2γ

r ; assume that γ is independent of T )

P�+ 2γ
r∫

P�

dP

P
=

(
Hg
m −H l

m

)
R

T ′vap∫
Tvap

dT

T 2
, so ln

P� + 2γ
r

P�
=

∆vapHm

R

[
1

Tvap
− 1

T ′vap

]
.

Rearranging the expression we find

T ′vap =
Tvap

1− RTvap
∆vapHm

ln
[
1 + 2γ

P�r

] .
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