Exam Thermodynamics 2

23 January 2019

Please, hand in your answers to problems $1,2,3$ and 4 on separate sheets. Put your name and student number on each sheet.

The examination time is $12: 30$ until $15: 30$, so 3 hours.
There are 4 problems, each with 4 subproblems, a list of constants and a formulae sheet, 6 pages in total.
All 16 subproblems have equal weight for the final grade.

Problem 1

a) Give a definition and short description of the following concepts
-Triple point
-First order phase transition
-Regular solution
-Molality
-pH
b) Give the characteristic equation for the Gibbs free energy for an open system with two components A and B and electrical work; use it to find a Maxwell relation between the chemical potential of A and E.
c) Give the meaning of all symbols in the following formula as well as a description of its use in thermodynamic problems.

$$
X_{i}=\left(\frac{\partial X}{\partial n_{i}}\right)_{P, T, n_{j \neq i}}
$$

d) At a sublimation (solid to gas) phase transition the entropy increases and as a consequence the number of microstates W increases to W^{\prime}.
Use the Boltzmann definition of entropy and the Clapeyron equation to show that

$$
W^{\prime}=W \exp \left[N_{g}\left(1-\frac{V_{s}}{V_{g}}\right)\right]
$$

where V_{s} and V_{g} are the volume of the solid and gas respectively and N_{g} is the number of molecules in the gas.

Problem 2

An electrochemical cell, based on the reaction $2 \mathrm{Ag}(\mathrm{s})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+2 \mathrm{AgCl}(\mathrm{s})$, is kept at a constant temperature of $T=298 \mathrm{~K}$ and at 1 bar.
The ElectroMotive Force (EMF) of the cell is 0.046 V at the given temperature and pressure. For these conditions the reaction enthalpy is $\Delta_{r} H=11.08 \mathrm{~kJ} / \mathrm{mol}$.
The change in volume during the reaction can be considered as negligible. The cell delivers a current to an external circuit.
a) Give the chemical equations for the half cell reactions.
b) Calculate the reaction Gibbs free energy $\Delta_{r} G$ (in $\mathrm{J} / \mathrm{mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}$) at 298 K .
c) Calculate the heat of the cell (in $\mathrm{J} / \mathrm{mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}$) in case the reaction proceeds reversibly.
d) Calculate the temperature coefficient $\left(\frac{\partial E}{\partial T}\right)_{P, q}$ of the EMF of the cell.

Problem 3

We consider the chiral compounds methylsuccinic acid and isopropylsuccinic acid.
We will use the following abbreviations for three of the four enantiomers:
R-MSA for (R)-methylsuccinic acid,
S-IPSA for (S)-isopropylsuccinic acid and
R-IPSA for (R)-isopropylsuccinic acid.
R-MSA and S-IPSA form a so-called quasi-racemic compound (R-MSA/S-IPSA)(s),
S-IPSA and R-IPSA form a racemic compound (S-IPSA/R-IPSA)(s) and
R-IPSA and R-MSA show a eutectic phase behaviour.
The phase diagram of the three combinations at $P=P^{\ominus}$ is given in Figure 1.

Figure 1: The phase diagram of the three combinations. The vertical lines represent the pure enantiomers as indicated; the horizontal axis represents the corresponding mole fractions, running three times from $x=0$ to $x=1$ for S-IPSA, R-IPSA and R-MSA, respectively. Eutectic compositions are present for $x_{e}=0.35,0.81,0.05$ and 0.29 .

Further data are
$T_{f u s}(\mathrm{R}-\mathrm{MSA})=114.0^{\circ} \mathrm{C}$,
$T_{f u s}(\mathrm{~S}-\mathrm{IPSA})=88.5^{\circ} \mathrm{C}$,
$T_{f u s}(\mathrm{~S}-\mathrm{IPSA} / \mathrm{R}-\mathrm{IPSA})=115.0^{\circ} \mathrm{C}$,
the eutectic temperature in the (R-MSA, S-IPSA) phase diagram is $T_{\mathrm{e}}=88.0^{\circ} \mathrm{C}$ at $x_{e}=0.35$,
the eutectic temperature in the (S-IPSA, R-IPSA) phase diagram is $T_{e}=85.5^{\circ} \mathrm{C}$,
the eutectic temperature in the (R-IPSA, R-MSA) phase diagram is $T_{e}=64.0{ }^{\circ} \mathrm{C}$,
$\Delta_{\text {fus }} H^{\ominus}(\mathrm{S}-\mathrm{IPSA})=18.2 \mathrm{~kJ} / \mathrm{mol}$ and
$\Delta_{\text {fus }} H^{\ominus}(\mathrm{S}-\mathrm{IPSA} / \mathrm{R}-\mathrm{IPSA})=250.5 \mathrm{~kJ} / \mathrm{mol}$ and is considered independent of the temperature.
a) The phase diagram is also present on a separate sheet.

Use this sheet to indicate the two-phase regions by hatching these areas in ALL regions of the phase diagram AND specify the phases present in all regions of ONLY the (R-MSA, S-IPSA) diagram (e.g.: R-MSA(s) + (R-MSA, S-IPSA)(l)).
Advise: add the further data given above to the diagram.
Hand in this sheet together with your other results.
b) The phase boundary line in the (R-MSA, S-IPSA) diagram starting from pure R-MSA can be considered as linear.
Calculate $\Delta_{\text {fus }} H^{\ominus}$ (R-MSA).
c) The liquid phase at $x=0.70$ in the (R-IPSA, R-MSA) diagram is cooled down to the eutectic temperature.
Calculate the relative amounts $n(\mathrm{l}) / n(\mathrm{~s})$ of the liquid and solid phases present at this temperature.
d) Determine the activity coefficient of the racemic compound γ (S-IPSA/R-IPSA)(l) in the liquid phase at the eutectic temperature in the (S-IPSA, R-IPSA) phase diagram.

Problem 4

At standard pressure dimethylsulfoxide $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}, \mathrm{DMSO}\right)$ is a liquid at room temperature. Some further data for DMSO are:
$M=78.13 \mathrm{~g} \mathrm{~mol}^{-1}$
$\rho=1.1004 \mathrm{~g} \mathrm{~cm}^{-3}$ at 298 K
$T_{f u s}=292 \mathrm{~K}$
$T_{v a p}=462.15 \mathrm{~K}$
$\Delta_{\text {vap }} H=42.70 \mathrm{~kJ} / \mathrm{mol}$
The temperature dependence of the vapour pressure P^{*} of the liquid is given by

$$
{ }^{10} \log P^{*}=A+\frac{B}{T}+C^{10} \log T+D T+E T^{2}
$$

where T is in Kelvin, P^{*} is in Torr, and
$A=45.465$ Torr,
$B=-4.044 \cdot 10^{3}$ Torr K,
$C=-1.321 \cdot 10^{1}$ Torr,
$D=1.098 \cdot 10^{-7}$ Torr K^{-1} and
$E=6.415 \cdot 10^{-6}$ Torr K ${ }^{-2}$.
The temperature dependence of the surface tension for the liquid-vapour interface is given by

$$
\gamma^{l g}=G\left(1-\frac{T}{T_{c}}\right)^{n}, \quad \text { where }
$$

$G=93.260 \mathrm{mN} / \mathrm{m}$,
$T_{c}=726.00 \mathrm{~K}$ and
$n=1.4300$,
resulting at $T=298 \mathrm{~K}$ in the value $\gamma^{l g}=43.8 \mathrm{mN} / \mathrm{m}$.
a) Calculate the vapour pressure of a spherical liquid droplet of DMSO with a diameter of $1 \mu \mathrm{~m}$ at 298 K .

Next we consider a bulk liquid of DMSO at constant pressure $\left(P=P^{\ominus}\right)$, in which a spherical DMSO vapour bubble, with a radius r, is present. The boiling temperature of the liquid is then dependent on the bubble radius r. This dependence is in good approximation given by

$$
T_{v a p}(r)=\frac{T_{\text {vap }}}{1-\frac{R T_{v a p}}{\Delta_{v a p} H} \ln \left[1+\frac{2 \gamma}{P r}\right]}
$$

where $T_{v a p}$ is the boiling temperature for $r=\infty$.
b) Calculate the boiling temperature of liquid DMSO for a vapour bubble diameter of $1 \mu \mathrm{~m}$.
c) The result of the former part is that it is possible to have a superheated liquid of DMSO. In reality the maximum achievable superheating is limited.
Discuss briefly what diminishes the superheating in practice.
d) Use the equilibrium condition for the liquid-vapour coexistence situation to find the expression for $T_{v a p}(r)$ given above.
Hint: Consider the vapour to behave as a perfect gas and assume that $\Delta_{v a p} H$ as well as the surface tension are independent of the temperature and equal to their values at $T_{\text {vap }}$.

List of constants

Elementary charge	e	$1.602 \cdot 10^{-19} \mathrm{C}$
Faraday's constant	F	$9.648 \cdot 10^{4} \mathrm{Cmol}^{-1}$
Vacuum dielectric constant	ϵ_{0}	$8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Boltzmann's constant	k	$1.381 \cdot 10^{-23} \mathrm{JK}^{-1}$
Planck's constant	h	$6.626 \cdot 10^{-34} \mathrm{Js}$
Bohr magneton	μ_{B}	$9.274 \cdot 10^{-24} \mathrm{JT}$
Atomic mass constant	m_{u}	$1.661 \cdot 10^{-27} \mathrm{~kg}$
Amadeo Avogadro di Quaregna e Ceretto's constant	N_{A}	$6.022 \cdot 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Free fall acceleration	g	$9.807 \mathrm{~ms}^{-2}$
Unit of energy		$1 \mathrm{cal}=4.184 \mathrm{~J}^{-2}=0.9869 \mathrm{~atm}=750 \mathrm{Torr}$
Standard pressure	P^{\ominus}	$1 \mathrm{bar}=10^{5} \mathrm{Nm}^{-2}=0$.

Formulae Thermodynamics (1)

$$
\begin{aligned}
& P V=n R T=N k T \\
& U=\frac{3}{2} n R T=\frac{3}{2} N k T \\
& \Delta U=W+Q \\
& \mathrm{~d} W=-P_{\text {ext. } \mathrm{d} V}+\mathrm{d} W^{\prime} \quad \text { and } \quad \mathrm{d} W_{\text {max }}^{\prime}=(\mathrm{d} G)_{P, T} \\
& \left.\mathrm{~d} Q\right|_{P}=C_{P} \mathrm{~d} T \quad \text { and }\left.\quad \mathrm{d} Q\right|_{V}=C_{V} \mathrm{~d} T \\
& \frac{Q_{1}}{Q_{2}}=--\frac{T_{1}}{T_{2}} \\
& \mathrm{~d} S=\frac{\mathrm{d} Q^{r e v}}{T} \geq \frac{\mathrm{d} Q}{T} \\
& \mathrm{~d} S_{\text {tot }}=\mathrm{d} S+\mathrm{d} S_{\text {omg }} \geq 0 \\
& \mathrm{~d} U=-P \mathrm{~d} V+T \mathrm{~d} S+\sum_{i} \mu_{i} \mathrm{~d} n_{i} \\
& H=U+P V \\
& \mathrm{~d} H=V \mathrm{~d} P+T \mathrm{~d} S+\sum_{i} \mu_{i} \mathrm{~d} n_{i} \\
& A=U-T S \\
& \mathrm{~d} A=-P \mathrm{~d} V-S \mathrm{~d} T+\sum_{i} \mu_{i} \mathrm{~d} n_{i} \\
& G=H-T S \\
& \mathrm{~d} G=V \mathrm{~d} P-S \mathrm{~d} T+\sum_{i} \mu_{i} \mathrm{~d} n_{i} \\
& \Delta_{r} G=\left(\frac{\partial G}{\partial \xi}\right)_{P, T}=\Delta_{r} G^{\ominus}+R T \ln Q, \quad \text { where } \quad Q=\prod_{i} a_{i}^{\nu_{i}} \\
& R T \ln K=-\Delta_{r} G^{\ominus} \\
& E=E^{\ominus}-\frac{R T}{\nu F} \ln Q \quad \text { and } \mathrm{d} W^{\prime}=E \mathrm{~d} q \quad \text { and } \quad E=I R \quad \text { and } \quad P=E I \\
& \mu_{i}=\mu_{i}^{\ominus}+R T \ln a_{i}=\mu_{i}^{\ominus}+R T \ln \frac{P_{i}}{P \ominus} \\
& G_{P, T}=\sum_{i} \mu_{i} n_{i} \\
& \sum_{j} n_{j} \mathrm{~d} \mu_{j}=0 \\
& \Delta T=\left(\frac{R T * 2}{\Delta_{\text {trs }} H}\right) x_{B} \\
& \Delta S=-n R\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right) \\
& \Pi=[B] R T=\frac{n_{B}}{V} R T \\
& S=k \ln W \\
& \frac{n_{i}}{N}=\frac{\exp \frac{-\epsilon_{i}}{k T}}{q}, \quad \text { where } \quad q=\sum_{i} \exp \frac{-\epsilon_{i}}{k T} \quad \text { and } \quad<X>=N<x>=N \sum_{i} x_{i} \frac{n_{i}}{N}
\end{aligned}
$$

Formulae Thermodynamics 2

$$
\begin{aligned}
& \left(\frac{\partial V}{\partial T}\right)_{P, W^{\prime}, n_{i}}=-\left(\frac{\partial S}{\partial P}\right)_{T, W^{\prime}, n_{i}} \\
& X_{i}=\left(\frac{\partial X}{\partial n_{i}}\right)_{P, T, n_{j \neq i}} \\
& \sum_{j} n_{j} \mathrm{~d} \mu_{j}=0 \\
& P_{j}=x_{j} P_{j}^{*} \\
& P_{j}=y_{j} P \\
& P_{B}=x_{B} K_{B} \\
& \left(\frac{\partial \mu_{\beta}}{\partial P}\right)_{T}-\left(\frac{\partial \mu_{\alpha}}{\partial P}\right)_{T}=\Delta_{\mathrm{trs}} V \\
& \left(\frac{\partial \mu_{\beta}}{\partial T}\right)_{P}-\left(\frac{\partial \mu_{\alpha}}{\partial T}\right)_{P}=-\Delta_{\mathrm{trs}} S \\
& P=P^{*} \exp \left(\frac{V_{m} \Delta P}{R T}\right) \\
& \frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{\Delta_{\mathrm{trs}} S}{\Delta_{\mathrm{trs}} V}=\frac{\Delta_{\mathrm{trs}} H}{T \Delta_{\mathrm{trs}} V} \\
& \frac{\mathrm{~d} \ln P}{\mathrm{~d} T} \approx \frac{\Delta_{\mathrm{trs}} H}{R T^{2}} \\
& \Delta T=\left(\frac{R T^{* 2}}{\Delta_{\mathrm{trs}} H}\right) x_{B} \quad \ln x_{B}=\frac{\Delta_{\mathrm{fus}} H}{R}\left[\frac{1}{T_{\mathrm{fus}}}-\frac{1}{T}\right] \\
& \mu=\mu^{\ominus}+R T \ln a=\mu^{\ominus}+R T \ln x+R T \ln \gamma \\
& \mu=\mu^{\ominus}+R T \ln a=\mu^{\ominus}+R T \ln \frac{b}{b^{\ominus}}+R T \ln \gamma \\
& F=C-P+2 \\
& n_{\alpha} l_{\alpha}=n_{\beta} l_{\beta} \\
& \Delta_{\mathrm{solv}} G^{\ominus}=-\frac{z_{i}^{2} e^{2} N_{A}}{8 \pi \epsilon_{0} r_{i}}\left(1-\frac{1}{\epsilon_{r}}\right) \\
& \gamma_{ \pm}=\left(\gamma_{+}^{p} \gamma_{-}^{q}\right)^{\frac{1}{p+q}} \\
& \log \gamma_{ \pm}=-\left|z_{+} z_{-}\right| A \sqrt{I} \\
& I=\frac{1}{2} \sum_{i} z_{i}^{2} \frac{b_{i}}{b^{\ominus}} \\
& A=\frac{F^{3}}{4 \pi N_{A} \ln 10}\left(\frac{\rho b^{\ominus}}{2 \epsilon^{3} R^{3} T^{3}}\right)^{\frac{1}{2}} \\
& P_{\text {in }}=P_{\text {out }}+\frac{2 \gamma}{r} \quad P=\rho g h \quad w_{a d}=\gamma_{s g}+\gamma_{l g}-\gamma_{s l} \quad \gamma_{s g}=\gamma_{s l}+\gamma_{l g} \cos \Theta_{c}
\end{aligned}
$$

Use this sheet to indicate the two-phase regions by hatching these areas in ALL regions of the phase diagram AND specify the phases present in the regions I-VII of ONLY the (R-MSA, S-IPSA) diagram; e.g.: RMSA(s) + (R-MSA, S-IPSA)(1) (problem 3a).
Hand in this sheet together with your other results.

Name:
Student no.:
FINAL/DRAFT (please, indicate)

THE FOLLOWING DIAGRAM CAN BE USED AS WELL IN CASE YOU RECONSIDER YOUR RESULT. INDICATE FINAL/DRAFT.

Name:
Student no.:
FINAL/DRAFT (please, indicate)

