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Exam Thermodynamics 2
23 January 2019

Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets.
Put your name and student number on each sheet.

The examination time is 12:30 until 15:30, so 3 hours.
There are 4 problems, each with 4 subproblems, a list of constants and a formulae sheet,

6 pages in total.
All 16 subproblems have equal weight for the final grade.

Problem 1

a) Give a definition and short description of the following concepts
-Triple point
-First order phase transition
-Regular solution
-Molality
-pH

b) Give the characteristic equation for the Gibbs free energy for an open system with two
components A and B and electrical work; use it to find a Maxwell relation between the
chemical potential of A and E.

c) Give the meaning of all symbols in the following formula as well as a description of its use
in thermodynamic problems.

Xi =

(
∂X

∂ni

)
P,T,nj 6=i

d) At a sublimation (solid to gas) phase transition the entropy increases and as a consequence
the number of microstates W increases to W ′.
Use the Boltzmann definition of entropy and the Clapeyron equation to show that

W ′ = W exp

[
Ng

(
1− Vs

Vg

)]
,

where Vs and Vg are the volume of the solid and gas respectively and Ng is the number of
molecules in the gas.

Problem 2

An electrochemical cell, based on the reaction 2Ag(s) + Hg2Cl2(s) → 2Hg(l) + 2AgCl(s), is kept
at a constant temperature of T = 298 K and at 1 bar.
The ElectroMotive Force (EMF) of the cell is 0.046 V at the given temperature and pressure.
For these conditions the reaction enthalpy is ∆rH = 11.08 kJ/mol.
The change in volume during the reaction can be considered as negligible.
The cell delivers a current to an external circuit.

a) Give the chemical equations for the half cell reactions.

b) Calculate the reaction Gibbs free energy ∆rG (in J/mol Hg2Cl2) at 298 K.

c) Calculate the heat of the cell (in J/mol Hg2Cl2) in case the reaction proceeds reversibly.

d) Calculate the temperature coefficient
(
∂E
∂T

)
P,q

of the EMF of the cell.
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Problem 3

We consider the chiral compounds methylsuccinic acid and isopropylsuccinic acid.
We will use the following abbreviations for three of the four enantiomers:
R-MSA for (R)-methylsuccinic acid,
S-IPSA for (S)-isopropylsuccinic acid and
R-IPSA for (R)-isopropylsuccinic acid.
R-MSA and S-IPSA form a so-called quasi-racemic compound (R-MSA/S-IPSA)(s),
S-IPSA and R-IPSA form a racemic compound (S-IPSA/R-IPSA)(s) and
R-IPSA and R-MSA show a eutectic phase behaviour.
The phase diagram of the three combinations at P = P� is given in Figure 1.
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Figure 1: The phase diagram of the three combinations. The vertical lines represent the pure
enantiomers as indicated; the horizontal axis represents the corresponding mole fractions, run-
ning three times from x = 0 to x = 1 for S-IPSA, R-IPSA and R-MSA, respectively. Eutectic
compositions are present for xe = 0.35, 0.81, 0.05 and 0.29.

Further data are
Tfus(R-MSA) = 114.0 ◦C,
Tfus(S-IPSA) = 88.5 ◦C,
Tfus(S-IPSA/R-IPSA) = 115.0 ◦C,
the eutectic temperature in the (R-MSA, S-IPSA) phase diagram is Te = 88.0 ◦C at xe = 0.35,
the eutectic temperature in the (S-IPSA, R-IPSA) phase diagram is Te = 85.5 ◦C,
the eutectic temperature in the (R-IPSA, R-MSA) phase diagram is Te = 64.0 ◦C,
∆fusH

�(S-IPSA) = 18.2 kJ/mol and
∆fusH

�(S-IPSA/R-IPSA) = 250.5 kJ/mol and is considered independent of the temperature.

a) The phase diagram is also present on a separate sheet.
Use this sheet to indicate the two-phase regions by hatching these areas in ALL regions of
the phase diagram AND specify the phases present in all regions of ONLY the (R-MSA,
S-IPSA) diagram (e.g.: R-MSA(s) + (R-MSA, S-IPSA)(l)).
Advise: add the further data given above to the diagram.
Hand in this sheet together with your other results.

b) The phase boundary line in the (R-MSA, S-IPSA) diagram starting from pure R-MSA can
be considered as linear.
Calculate ∆fusH

�(R-MSA).

c) The liquid phase at x = 0.70 in the (R-IPSA, R-MSA) diagram is cooled down to the eutectic
temperature.
Calculate the relative amounts n(l)/n(s) of the liquid and solid phases present at this tem-
perature.

d) Determine the activity coefficient of the racemic compound γ(S-IPSA/R-IPSA)(l) in the
liquid phase at the eutectic temperature in the (S-IPSA, R-IPSA) phase diagram.
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Problem 4

At standard pressure dimethylsulfoxide ((CH3)2SO, DMSO) is a liquid at room temperature.
Some further data for DMSO are:
M = 78.13 g mol−1

ρ = 1.1004 g cm−3 at 298 K
Tfus = 292 K
Tvap = 462.15 K
∆vapH = 42.70 kJ/mol
The temperature dependence of the vapour pressure P ∗ of the liquid is given by

10 logP ∗ = A+
B

T
+ C10 log T +DT + ET 2,

where T is in Kelvin, P ∗ is in Torr, and
A = 45.465 Torr,
B = −4.044 · 103 Torr K,
C = −1.321 · 101 Torr,
D = 1.098 · 10−7 Torr K−1 and
E = 6.415 · 10−6 Torr K−2.
The temperature dependence of the surface tension for the liquid-vapour interface is given by

γlg = G

(
1− T

Tc

)n
, where

G = 93.260 mN/m,
Tc = 726.00 K and
n = 1.4300,
resulting at T = 298 K in the value γlg = 43.8 mN/m.

a) Calculate the vapour pressure of a spherical liquid droplet of DMSO with a diameter of 1 µm
at 298 K.

Next we consider a bulk liquid of DMSO at constant pressure (P = P�), in which a spherical
DMSO vapour bubble, with a radius r, is present. The boiling temperature of the liquid is then
dependent on the bubble radius r. This dependence is in good approximation given by

Tvap(r) =
Tvap

1− RTvap

∆vapH
ln
[
1 + 2γ

Pr

] ,
where Tvap is the boiling temperature for r =∞.

b) Calculate the boiling temperature of liquid DMSO for a vapour bubble diameter of 1 µm.

c) The result of the former part is that it is possible to have a superheated liquid of DMSO. In
reality the maximum achievable superheating is limited.
Discuss briefly what diminishes the superheating in practice.

d) Use the equilibrium condition for the liquid-vapour coexistence situation to find the expres-
sion for Tvap(r) given above.
Hint: Consider the vapour to behave as a perfect gas and assume that ∆vapH as well as the
surface tension are independent of the temperature and equal to their values at Tvap.
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List of constants

Elementary charge e 1.602 · 10−19 C
Faraday’s constant F 9.648 · 104 Cmol−1

Vacuum dielectric constant ε0 8.854 · 10−12 C2J−1m−1

Boltzmann’s constant k 1.381 · 10−23 JK−1

Planck’s constant h 6.626 · 10−34 Js
Bohr magneton µB 9.274 · 10−24 JT−1

Atomic mass constant mu 1.661 · 10−27 kg
Amadeo Avogadro di Quaregna e Ceretto’s constant NA 6.022 · 1023 mol−1

Gas constant R 8.314 JK−1mol−1

Free fall acceleration g 9.807 ms−2

Unit of energy 1 cal = 4.184 J
Standard pressure P� 1 bar = 105 Nm−2 = 0.9869 atm = 750 Torr
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Formulae Thermodynamics (1)

PV = nRT = NkT

U =
3

2
nRT =

3

2
NkT

∆U = W +Q

dW = −Pext.dV + dW ′ and dW ′max = (dG)P,T

dQ|P = CPdT and dQ|V = CV dT

Q1

Q2
= −T1

T2

dS =
dQrev

T
≥ dQ

T

dStot = dS + dSomg ≥ 0

dU = −PdV + TdS +
∑
i

µidni

H = U + PV

dH = V dP + TdS +
∑
i

µidni

A = U − TS

dA = −PdV − SdT +
∑
i

µidni

G = H − TS

dG = V dP − SdT +
∑
i

µidni

∆rG =

(
∂G

∂ξ

)
P,T

= ∆rG
� +RT lnQ, where Q =

∏
i

aνii

RT lnK = −∆rG
�

E = E� − RT

νF
lnQ and dW ′ = Edq and E = IR and P = EI

µi = µ�
i +RT ln ai = µ�

i +RT ln
Pi
P�

GP,T =
∑
i

µini

∑
j

njdµj = 0

∆T =

(
RT ∗2

∆trsH

)
xB

∆S = −nR (xA lnxA + xB lnxB)

Π = [B]RT =
nB
V
RT

S = k lnW

ni
N

=
exp −εikT

q
, where q =

∑
i

exp
−εi
kT

and < X >= N < x >= N
∑
i

xi
ni
N
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Formulae Thermodynamics 2(
∂V

∂T

)
P,W ′,ni

= −
(
∂S

∂P

)
T,W ′,ni

Xi =

(
∂X

∂ni

)
P,T,nj 6=i∑

j

njdµj = 0

Pj = xjP
∗
j

Pj = yjP

PB = xBKB(
∂µβ
∂P

)
T

−
(
∂µα
∂P

)
T

= ∆trsV(
∂µβ
∂T

)
P

−
(
∂µα
∂T

)
P

= −∆trsS

P = P ∗ exp

(
Vm∆P

RT

)
dP

dT
=

∆trsS

∆trsV
=

∆trsH

T∆trsV

d lnP

dT
≈ ∆trsH

RT 2

∆T =

(
RT ∗2

∆trsH

)
xB lnxB =

∆fusH

R

[
1

Tfus
− 1

T

]
µ = µ� +RT ln a = µ� +RT lnx+RT ln γ

µ = µ� +RT ln a = µ� +RT ln
b

b�
+RT ln γ

F = C − P + 2

nαlα = nβlβ

∆solvG
� = −z

2
i e

2NA
8πε0ri

(
1− 1

εr

)
γ± =

(
γp+γ

q
−
) 1

p+q

log γ± = −|z+z−|A
√
I

I =
1

2

∑
i

z2
i

bi
b�

A =
F 3

4πNA ln 10

(
ρb�

2ε3R3T 3

) 1
2

Pin = Pout +
2γ

r
P = ρgh wad = γsg + γlg − γsl γsg = γsl + γlg cos Θc
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Use this sheet to indicate the two-phase regions by hatching these areas
in ALL regions of the phase diagram AND specify the phases present
in the regions I-VII of ONLY the (R-MSA, S-IPSA) diagram; e.g.: R-
MSA(s) + (R-MSA, S-IPSA)(l) (problem 3a).
Hand in this sheet together with your other results.
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Student no.:
FINAL/DRAFT (please, indicate)
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THE FOLLOWING DIAGRAM CAN BE USED AS WELL IN CASE
YOU RECONSIDER YOUR RESULT. INDICATE FINAL/DRAFT.

Name:
Student no.:
FINAL/DRAFT (please, indicate)
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